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LETTER TO THE EDITOR 

On the absence of the completely ordered phase in the 
Flory model of semi- flexible linear polymers 

P D Gujratit 
Division of Natural Science and Mathematics, Yeshiva University, New York, New York 
10033, USA 

Received 6 October 1980 

Abstract. It is shown that in the Flory model of semi-flexible polymer chains, an assumption 
of random occupation of sites is not valid for estimating the excluded volume effects when 
the fraction of gauche bonds is small. Thus the model is never completely ordered except 
presumably at I" = 0, and the free energy is such that it cannot give rise to a melting 
transition from a state of zero configurational entropy at some finite temperature. This study 
also casts doubts on the conclusion of Gibbs and DiMarzio that the above model exhibits a 
second-order phase transition, i.e. a glass transition at a finite temperature in the super- 
cooled phase. 

The quasi-lattice model of Meyer (1939), Flory (1942) and Huggins (1942) is a standard 
and reasonable model in the study of the statistical mechanical properties of linear 
polymer systems. A polymer chain is assumed to consist of n equal segments, each equal 
in size to that of the solvent molecule. A site of the lattice may be occupied by a solvent 
molecule or by a segment. The segments of a polymer chain must occupy a continuous 
sequence of sites connected by nearest-neighbour bonds. A bond which is not collinear 
with the preceding bond is termed 'gauche'. In the semi-flexible polymer chains 
considered here, there is an energy E > 0 for each gauche bond. Excluded volume 
effects are taken into account by the requirement that a site can be occupied once, either 
by a solvent molecule or by a polymer segment. Flory (1942, 1956) introduced an 
approximation to estimate the number of configurations W ( g )  for a given fraction g of 
gauche bonds. The. nature of the approximation is such that it predicts that the estimate 
W,(g)  + 0 in the thermodynamic limit for all g S go, where go is some finite value (see 
(3) below). This is taken to imply that the entropy s ( g )  = 0 for g G go. However, in this 
Letter we will establish rigorously that s ( g )  > 0 for all g > 0, and that the form of the free 
energy (curve (c), figure 1) is very different from the one proposed by Flory (curve OCB, 
figure 1). 

In this Letter we consider in detail a limiting case of the situation, namely a single 
polymer chain of rt segments in the absence of any solvent molecules, so that the chain 
covers the whole lattice. This limit is the appropriate one for the physical case of pure 
polymer melting. We will also give the result for the case of many polymer chains. The 
extension to the case with solvent molecules is easy and will also be discussed later in 
this Letter. 

i Present address: Department of Physics, Carnegie-Mellon University, Pittsburgh, Pa 15213, USA. 
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For simplicity, take a square lattice (4; x 4;) of n sites that will be covered by the 
single polymer chain. The problem is better known as the Hamilton walk problem 
(Kasteleyn 1963a, 1967). Let WH(g) be the number of Hamilton walks with fraction g 
of gauche bonds. The Flory approximation (Flory 1942,1956) applied to this problem 
yields the following estimate W&) for W H ( g ) :  

for the square lattice. In the Flory model, the internal energy is E ( g )  = Egn, where E > 0 
is the energy required to bend a segment. Thus, according to (l), the free energy per site 
is given by 

= T [ I  - ln( l+  2e-'/T)]. (2) 

The function fF (T)  is shown in figure 1 by the curve OACB. The segment BC 
represents the liquid phase above T,, and the stable phase below T, corresponding to a 
perfectly ordered crystal (2 = 0, E = 0 ,  s = 0) is described by the zero free-energy line 
OC (Flory 1956). The phase transition at T, is a first-order transition. It is easily seen 
that 

W F ( g )  0 for gsgo-0 .45 .  (3) 
n+m 

Figure 1. Various free energies: ( a )  f p ( T ) ,  ( b )  ~HH(T), (c)  ~ H ( T ) .  

The vanishing of w&) for small values of g ( S g o )  gives rise to the first-order transition 
at T,. It should be noted that if we use the Huggins approximation instead of the Flory 
approximation, a similar result to (3) is obtained except that go = 0.227 (Gujrati and 
Goldstein 1980 to be published). 

There are some previous exact results which show that the Flory approximation is 
qualitatively inaccurate. One result concerns WH, which is defined to be the total 
number of Hamilton walks summed over all values of g. On the square lattice, one has 
the rigorous bounds 

(1.338 . . .)" G W H G  (1.539 . . (4 ) 
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The lower bound is the exact result of Kasteleyn (1963a) for the number of Hamilton 
walks, WE, with the Manhattan rule for traffic. (A square lattice with the Manhattan 
traffic rule is an oriented square lattice such that the orientations along various rows or 
columns alternate.) This Manhattan constraint disallows some walks that appear in 
WH, but does not introduce any new ones and is, therefore, a lower bound to WH as 
noted by Gordon et a1 (1976). The upper bound comes from the total number of 
configurations of 'square' ice as noted by Domb (1974). Now if one sums (1) over all g 
to obtain the Flory approximation, WF, for WH, one finds 

WF = (3/e)" = (1.1036 . . .)" ( 5 )  

which is well outside the rigorous bounds. (However, if one adopts the Huggins 
approximation, then WH is estimated by (3/2)" which is inside the bounds (Gujrati and 
Goldstein 1980, to be published).) Another test of the Flory approximation is to apply 
it directly to the Manhattan lattice result, as noted by Nagle (1974), with the result that 
WE = (1,338 . . .)" is estimated by 

(Using the Huggins approximation, we estimate WE to be unity (Gujrati and Goldstein 
1980, to be published).) Similar tests for various exactly solvable chain models which 
are not Hamilton walks have also been made by Nagle (1974). All of these exact results 
establish that the Flory-Huggins approximations are inaccurate to varying degrees, but 
none of them diagnoses the fundamental, qualitative discrepancy found in this paper. 

Comparisons of (4) and (5) and of (6) with WE show that, at least for some g, (1) is 
an underestimate. However, we shall now demonstrate that (1) is even more mislead- 
ing, in that the entropy per segment 

sH(g) = nP1 In wH(g) 

is finite for any g > 0 ,  i.e. there is not a go> 0,  where sH(g) goes to zero. Presumably this 
entropy sH(g) approaches zero as g + 0. The proof proceeds by explicit construction of 
some of the possible Hamilton walks, and yields a rigorous lower bound for sH(g). 
Consider a set of n/2(m + 3), m > 0, identical rectangles, each having ( m  + 3) sites along 
the vertical sides and the two sites along the horizontal sides. Arrange them into &/2 
columns, each having &/(m + 3) rectangles, one on top of another. This arrangement 
covers all the n sites of the lattice. Take any row of rectangles and join them at any two 
consecutive points, excluding the corner points (see figure 2), giving rise to a long 
horizontal circuit. Now join these &/(m '3) circuits at any of the columns (for 

Figure 2. A Hamilton circuit. 
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example, at the point A in figure 2) to get a Hamilton circuit. The Hamilton walks are 
obtained by deleting any one of the n bonds of this circuit. It is easily seen that the total 
number of Hamilton walks thus generated is given by (we will neglect terms that do not 
contribute to the entropy per segment in the thermodynamic limit) 

9 n >> 1. (7) @H(g) = 1 1 1 [ n / 2 h + 3 ) 1  

Since each rectangle contributes eight gauche bonds, we have 

8 4 
‘=2(m+3)==  

for the fraction of the gauche bonds. If &(g) = ( l / n )  In $&), we have 

fH(g) = i g  In (4/g - 3), (8) 

which is positive for any g > 0. It is obvious that what we have obtained is a lower bound 
@&) for wE,(g). Thus, the actual entropy sH(g) per segment must be such that 

sH(g) fH(g), (9) 

and hence sH(g) is positive for any g > 0, in contrast with (3). 
Let us now consider the thermodynamics of this model. Let fH(T) be the actual free 

energy per site (w&) replaced by w&) in (2)) for the Flory model, andf;(T)  the free 
energy per site obtained by using the lower bound @&) in place of w&). Since 
w&) 3 @&), W e  find that 

f H ( T )  <?H(T)* (10) 

At T = 0, the system must be in its ground state, i.e. E(g)  = 0. Thus, fH( T = 0) = 0. We 
also find that, at low temperatures? 

fH(T) = -(T/2e) e-8E/T 

so that fH(T = 0) = 0. Since the curve f H ( T )  lies below T H ( T )  (according to (10)) and 
meets it at T = 0 (see figure l ) ,  and is a concave function of T, it is obvious that the actual 
entropy sH = -8fH/dT per site must be finite at any temperature. It presumably 
approaches zero as T -0 .  Thus, the system is never completely ordered, except 
(presumably) at T = 0. It is evident that the behaviour of fF(T), curve (a )  in figure 1, is 
quantitatively incorrect at low temperatures. The above conclusions remain unchanged 
even when the refinement due to Huggins (1942) is taken into account to obtain a better 
estimate of WEx(g) (Gujrati and Goldstein 1980, to be published). 

Until now we have considered the special case of a single polymer chain. It is not 
hard to extend the above analysis to a system of p polymer chains, each having I 
monomers ( n  = p  x I ) .  For simplicity, consider the case p = I = &. We can divide the 
square lattice into square cells, each with & sites, and cover each cell with a single 
polymer chain, as described above. Another way of obtaining the lower bsund is to cut 
the Hamilton walks obtained in the case of a single polymer chain into J n  pieces, each 
covering J n  sites. It must be obvious that (8) is a lower bound even for this case. The 
case of finite but large 1 is involved, but the idea is again the same: divide the lattice into 
cells and cover each cell by a certain number of polymers by the kind of construction 
described here. The detailed analysis will be presented elsewhere (Gujrati 1980, to be 
published) but we will quote the result here and make some observations. The entropy 
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per segment is bounded from below by 

s ( g ) s l n  2 / 1 2 + $ g  In (4/g) (11) 

for small values of g. For g = 0, s(g) is bounded by in 2/12, obtained by covering cells of 
size 1 x 1 by 1 different polymer chains all lying either vertically or horizontally. For 
small g, we can neglect 3 compared to 4/g in (8), and we note from (11) that 
s(g) 3 ?H(g). In the case where there are no solvent molecules, we treat them as lattice 
sites not covered by polymer chains. There are n + no sites on the lattice and we divide 
the lattice into two pieces L1 and L2, L1 containing n sites and L2 containing no sites. We 
now cover L1 by polymer chains, and it is obvious that (8) again is a lower bound for the 
entropy. The calculation for the three-dimensional cubic lattice is done by treating the 
lattice as an assembly of square lattices and covering each square lattice as above. Thus 
(8) again forms the lower bound (see also Gujrati 1980, to be published). It should be 
clear, therefore, that the conclusions given in the paragraph immediately after (9) 
remain valid for all these cases. 

We have shown above that the Flory model of flexible linear chains is never 
completely ordered except at T = 0. This behaviour is drastically different from the one 
originally proposed by Flory and implied by the free energy curve OCB (see figure 1). 
Thus, it should be obvious that the assumption of random occupation of sites to account 
for excluded volume effects is not valid, at least for small g. It should be mentioned that 
there are other models, namely the KDP model of Slater (1941) (see also Nagle 1969, 
Lieb 1967a, Sutherland 1967), the F-model of Rys (1963) (see also Lieb 1967b) and the 
Kasteleyn dimer model (1963b) that has been applied to polymer systems by Nagle 
(1974). The KDP model and the dimer model have free energies which are similar to 
the one originally proposed by Flory for his model, namely OCB (figure 1). However, 
both these models have an artificial anisotropic constraint which is necessary for this 
behaviour. On the other hand, the F-model which does not have this constraint has an 
infinite-order phase transition, that is, the free energy and all its derivatives are 
continuous at T,, but the free energy is not analytically continuable through T,. The 
entropy of the system in this model at any finite temperature is non-zero, just like it is in 
the Flory model as shown in this paper. It is obvious that the F-model cannot describe 
polymer crystallisation, but when kinetics are taken into account it is conceivable that 
this model will have a glass transition at low temperatures (Nagle 1974), because the 
low-lying excitations in the model are best described as chain folding, which would be 
kinetically very slow (see below). Both the KDP and F-models suffer from the 
drawback that they allow closed polymer rings which, however, are probably not very 
serious at low temperatures. 

Finally, we wish to point out the relevance of our result to the theory of the glass 
transition as given by Gibbs and DiMarzio (1958). The fact that the actual free energy 
~ H ( T )  does not have the form proposed by Flory (figure 1) also casts doubt (see also 
Gujrati and Goldstein 1980, to be published) on the use of his calculations (more 
precisely, the Flory-Huggins approximation) by Gibbs and DiMarzio. They have 
proposed that the curve AC in figure 1 is the free energy of a supercooled liquid phase 
which undergoes a second-order phase transition at a temperature T2 where the 
entropy SF( T2) goes to zero, but gF( T2) > 0 (point A on the curve AC in figure 1). They 
suggest that the vanishing of sF(Tz) is indirectly related to the slowing down of the 
kinetic phenomena observed experimentally at some higher temperature T,. Accord- 
ing to Gibbs and DiMarzio, the free energy remains constant at fo (see figure 1) below 
T,, in the ‘ideal’ glassy state, with zero slope, i.e. zero entropy, but finite and constant 
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gF = f O / E .  However, it is implicitly assumed in their calculation that WF(g) is a good 
estimate of W(g),  even at small g, contrary to what has been established here. And we 
have also shown that the curve OAC is qualitatively incorrect, at low temperatures. 
Thus, there are serious doubts about the validity of the conclusions arrived at by Gibbs 
and DiMarzio (1958). To be sure, it is possible that the correct fH(T) could have a 
first-order phase transition at a finite temperature, but there is no reason to suppose that 
a metastable extension of the liquid free energy would behave similarly to the curve AC 
in figure 1. 

I would like to thank Professors R M Friedberg, R B Griffiths and J F Nagle for 
discussions and comments, and Professor M Goldstein for introducing me to the subject 
and for numerous helpful comments. 
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